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ABSTRACT

In this paper, we propose a modular approach for separating the instruction-to-
action mapping procedure into two separate stages. The two stages are bridged
via an intermediate representation called a goal. The first stage maps an input
instruction to its corresponding goal, while the second stage maps the goal to an
appropriate policy selected from a set of robot policies. The policy is selected
with an aim to guide the robot to reach the goal as close as possible. We imple-
ment the above two stages as a framework consisting of two distinct modules: an
instruction-goal mapping module and a goal-policy mapping module. We evaluate
the effectiveness of our method on a number of OpenAI Gym robotic arm manipu-
lation tasks against several baseline methods. Our results show that the proposed
framework is able to learn an effective instruction-to-action mapping procedure
in an environment with a given instruction set more efficiently than the baseline
methods. In addition to the impressive data-efficiency, the results also demonstrate
that our modular framework can be adapted to new instruction sets and new robot
action spaces much faster than the baselines.

1 INTRODUCTION

Understanding human instructions and interpreting them into actions have long been a crucial need
and research focus for autonomous robots (Winograd, 1972; Thomason et al., 2017). Traditionally,
this is treated by researchers as a semantic-parsing and instruction-to-action mapping problem. A
number of earlier approaches (Chen & Mooney, 2011; Matuszek et al., 2010; 2013; Mei et al., 2016)
propose to learn semantic parsers that map natural languages or human instructions to sequences
of actions executable by robots in supervised fashions. Although these approaches have been well
explored and mostly validated in their specific problem domains, they typically require a significant
amount of human supervision and/or linguistic knowledge. In case that the annotated action sequences
of a robot or the relevant linguistic background is not directly available, nevertheless, developing
such an instruction-to-action mapping procedure becomes no longer straightforward.
Researchers in recent years have attempted to relax the above constraints by adopting two alternative
approaches: reinforcement learning (RL) and imitation learning (IL). Both approaches seek to learn a
behavior policy π for an agent that executes the given instructions appropriately. Several RL-based
techniques have been explored (Branavan et al., 2009; Misra et al., 2017; Hermann et al., 2017;
Chaplot et al., 2018). On the other hand, several IL-based techniques have also been leveraged in
autonomous robots for executing a diverse range of instructions in a number of tasks (Argall et al.,
2009). Although these RL- and IL-based approaches enable robots to learn effective π’s to deal with
the instruction-to-action mapping problem with little human supervision, they usually train their π’s
in an end-to-end manner. This prevents π from easy adaption to new sets of instructions or robots
with different action spaces, unless dedicated training data are provided additionally.
To deal with the issues mentioned above, we propose a modular approach which separates the
instruction-to-action mapping procedure into two separate stages. The two stages are bridged via an
intermediate representation called a goal. The first stage maps an input instruction c ∈ C (where C
is an instruction space) to a goal g ∈ G (where G is the goal space), while the second stage maps
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g to an appropriate policy π executable by the robot. The policy π is trained with an aim to guide
the robot to reach g as close as possible. Different from the previous end-to-end training methods,
these two stages are trained separately as long as they both agree on the same goal representation.
The modular approach allows either of the two stages to be replaced by another implementation. The
modular nature of our approach enables a robot to adapt to a new instruction set quickly, and allows
different robots to be maneuvered by the same instruction-to-goal mapping function.
In this paper, we implement the above two stages as a framework consisting of two distinct modules:
an instruction-goal mapping module and a goal-policy mapping module. The first module embraces
the concept of metric learning, which aims to train a metric function called the distance function as a
non-linear regressor to evaluate whether a given instruction c is close to a goal g or not. The second
module is implemented as a policy π conditioned on g. Given an input instruction c in the evaluation
phase, the instruction-goal mapping module first translates c to a robot-interpretable goal g. The
translation is performed by using the distance function output as a metric to search for the most
similar g in the goal space G. The implementation of the goal-searching procedure is dependent on
the nature of the goal. For instance, a straightforward enumeration algorithm is likely an appropriate
option for a discrete goal, while a more complicated sampling-based search scheme is required for
a goal in the continuous space. In this work, we consider goals in the continuous space. Once a
goal ĝ ∈ G is derived by the instruction-goal mapping module, it is fed into the goal-policy mapping
module as the condition for the conditional policy π to maneuver the robot.
We perform extensive experiments on multiple OpenAI Gym (Brockman et al., 2016) robotic arm
manipulation task environments simulated by the MuJoCo physics engine (Todorov et al., 2012),
including FetchReach, FetchPush, FetchPickAndPlace, and FetchSlide. We compare our framework
against an RL-based (et al., 2014) and an IL-based baselines (Bain & Sammut, 1999). Our experi-
mental results show that the proposed framework is able to learn an effective instruction-to-action
mapping procedure in an environment with a given instruction set more efficiently than the baseline
methods. In addition to the impressive data-efficiency, the results also show that our framework
can be adapted to a new instruction set and a new robot action space much faster than the baseline
methods. The main contributions of the paper are summarized as the following:

• A modular framework for mapping human instructions to robot policies via a goal representation.
• An unsupervised training method requiring neither action labels nor prior instruction-goal pairs.
• A distance function and a policy mapping method for relating an instruction and a goal.
• A comprehensive comparison of the learning efficiency between our framework and the baselines.
• A detailed evaluation for the adaptability of our framework against the baseline methods.

The rest of this paper is organized as follows. Section 2 presents the proposed framework. Section 3
demonstrate the experimental results and discusses their implications. Section 4 concludes the paper.

2 PROPOSED METHODOLOGY

In this section, we present the proposed modular framework and the implementation details. We first
provide an overview of the framework, followed by an in-depth explanation of the modules in it.

2.1 OVERVIEW OF THE PROPOSED FRAMEWORK

Fig. 1 illustrates the proposed framework, which targets at mapping an instruction code c ∈ C to
a behavior policy π ∈ Π of a robot, where C and Π represent the instruction space and the set of
policies owned by the robot, respectively. The framework consists of two modules in the evaluation
phase (the blue parts): an instruction-goal mapping module and a goal-policy mapping module. The
former first maps a given instruction c to a goal ĝ ∈ G (where G is the goal space), while the latter
maps ĝ to a conditional policy π(a|o, ĝ) that leads the robot to a goal as close to ĝ as possible. The
main objective of the instruction-goal mapping module is to learn a mapping function between the
two spaces C and G. On the other hand, the goal-policy mapping module aims to learn a proper
conditional policy π(a|o, g) such that the distance between ĝ and the actually reached goal by the
robot is minimized. The instruction-goal and goal-policy mapping modules are trained separately.
In the proposed framework, two key components are trained in the training phase: the distance
functionDistφ(c, g) (the red part) and the conditional policy π(a|o, g) (the green part). The former is
utilized in the instruction-goal mapping module, while the latter is employed by the instruction-goal
mapping module, as depicted in Fig. 1. The distance function Distφ(c, g) is implemented as a deep
neural network (DNN) parameterized by a set of trainable parameters φ, and is trained to evaluate
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Figure 1: Overview of the proposed framework. During the training phase, we first train DDPG-
HER (Andrychowicz et al., 2017) in a goal-based environment. In such an environment, we collect the
desired goal g and achieved goal g′ explored by the well-trained conditional policy π(a|o, g), as well as the
instruction-goal pair (c, g∗) demonstrated by an expert for training the distance function Distφ(c, g). In the
evaluation phase, we feed the input instruction c to the instruction-goal mapping module, which uses Distφ to
search for the closest goal ĝ to the instruction c by CEM (Rubinstein & Kroese, 2013). The goal ĝ is passed to
the goal-policy mapping module as the condition for the policy π(a|o, g) to interact with the environment.

the affinity between a given instruction c and a goal g. The conditional policy π(a|o, g) is also
implemented as a DNN, and is trained by a method called DDPG-HER (Andrychowicz et al., 2017).
During the training phase, the framework first trains the conditional policy π(a|o, g) such that for any
desired goal g, the achieved goal g′ actually reached by π(a|o, g) is close to g as much as possible.
The framework then uses the pair (g, g′) as well as the instruction-goal pair (c, g∗) demonstrated
by an expert for training Distφ(c, g). Please note that g∗ is the ground truth goal of instruction c.
In the evaluation phase, the instruction-goal mapping module first maps an input instruction c to its
closest goal ĝ by iteratively searching for ĝ in G using the cross-entropy method (CEM) (Rubinstein
& Kroese, 2013), which employs Distφ(c, g) as the metric function for optimization. The goal ĝ is
then passed to the goal-policy mapping module for π(a|o, g) to maneuver the robot to its destination.

2.2 DISTANCE FUNCTION

The distance function Distφ(c, g) serves as a metric function for measuring the affinity between
any given pairs of c and g. Instead of directly comparing the representations of c and g, Distφ(c, g)
is trained to predict the distance between g∗ and g′. A number of 4-tuples (c, g, g′, g∗) are first
sampled from the expert, the environment, and the conditional policy π(a|o, ĝ). The distance d of
each sampled pair (g′, g∗) is then measured in terms of the L2 distance, and is formulated as follows:

d(g′, g∗) = ‖g′ − g∗‖2 . (1)

Given the expression of d(g′, g∗), the loss function LDist of Distφ(c, g) is therefore represented as:

LDistφ = ‖Distφ(c, g)− d(g′, g∗)‖2 . (2)

In this work, Distφ(c, g) is implemented as an two-layer fully-connected (FC) neural network. The
parameters φ are iteratively updated such that the loss function LDistφ of Distφ(c, g) is minimized.

2.3 GOAL SEARCHING PROCESS (GSP)

In this section, we present the details of goal searching process (GSP) in the instruction-goal mapping
module. As the goal space G we consider in this paper is continuous and enumeration is impractical,
GSP embraces a sampling-based searching algorithm that seeks to find a satisfactory pair of mean
and variance (µg, σg) to sample a normal distribution of ĝ within a given amount of time TS . The
sampling-based searching algorithm adopted in this paper is CEM, which casts the searching problem
into an optimization problem. It repeats the sampling procedure until either the convergence condition
or TS is met. In each iteration, (µg, σg) is updated toward the direction that decreases Distφ(c, g),
which serves as the metric function for evaluating the distances between c and the sampled ĝ’s.

3 EXPERIMENTAL RESULTS

In this section, we present the experimental results and discuss their implications. We start by a
brief introduction to our experimental setup. Next, we compare the performance and the learning
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Figure 2: Comparison of our approach and the RL-based baseline.

Figure 3: Comparison of our approach and the IL-based baseline.

efficiency of the proposed framework against a number of baseline methods. Finally, we validate the
adaptability of our modular framework by replacing the input instruction set and robot action space
to different ones, and demonstrate the adaptation efficiency of our framework over the baselines.

3.1 EXPERIMENTAL SETUP

In this section, we introduce the environments and tasks, as well as the baselines used for comparison.

3.1.1 ENVIRONMENTS AND TASKS

We evaluate our framework on a number of robotic arm manipulation tasks via OpenAI Gym (Brock-
man et al., 2016) environments simulated by the MuJoCo (Todorov et al., 2012) physics engine.
We use the Fetch robotic arm (Plappert et al., 2018) for the arm manipulation tasks, which include
FetchReach, FetchPush, FetchPickAndPlace, and FetchSlide. The agent takes as inputs the positions
and velocities of a gripper and a target goal. It then infers the gripper’s action in 3-dimensional space
to achieve the goal. The detailed description of the above tasks is specified in (Plappert et al., 2018).

3.1.2 BASELINES

We adopt both RL- and IL-based approaches as the baseline methods. They are described as follows.
RL-based. We adopt DDPG as our RL-based baseline method, as it enables our agents to be trained
in continuous action spaces. The RL-based agents receive a pair of instruction and observation (c, o)
from the environment at each timestep, and are trained to reach the goal specified by c.
IL-based. In the IL-based baseline, we adapt the behavior cloning (BC) approach (Bain & Sammut,
1999) which learns to infer the demonstrated action given an observation o. The demonstration data
used for training is collected by a pre-trained DDPG-HER agent, and contain tuples of (c, o, a).
Similar to the RL-based baseline, our proposed framework utilizes training data acquired from
interactions between the agent and the environment (i.e., for training the conditional policy π(a|o, g)).
Moreover, both the proposed framework and IL- based baseline employ training data that is demon-
strated by an expert (i.e., the demonstration data is utilized for training the distance function Distφ.).

3.2 COMPARISON OF DATA EFFICIENCY IN THE DEFAULT ENVIRONMENT

In order to compare the data-efficiency of our method against that of the baselines, we evaluate their
performances on the tasks described in Section 3.1.1 with a fixed instruction set and action space.
In each task, the instruction sets employed for the training phase and the evaluation phase are the
same. Similarly, the action spaces in both phases are consistent. Fig. 2 plots the learning curves of
the models in each tasks. The x-axis of Fig. 2 indicates the number of training episodes. On the other
hand, the x-axis of Fig. 3 represents the number of state-action pairs used by the IL-baseline. Note
that the red dashed-lines in Fig. 3 correspond to the performance of our approach, and are obtained
from 80 episodes of training. From Fig. 2, the results point out that learning the instruction-to-action
mapping in an end-to-end fashion as the the RL-based baseline is more complex than our modular
approach. Moreover, the results in Fig. 3 indicate that our approach delivers better performance in
most of the tasks. Figs. 2 and 3 show that our method is able to yield same or superior performance
comparing to the RL- and IL-based baselines, and is more data efficient and effective than them.
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Figure 4: Comparison of adaptability with the RL-based baseline on a novel instruction set.

Figure 5: Comparison of adaptability with the IL-based baseline on a novel instruction set.

Figure 6: Comparison of adaptability with the RL-based baseline on a novel action space.

Figure 7: Comparison of adaptability with the IL-based baseline on a novel action space.

3.3 COMPARISON OF ADAPTABILITY WITH A DIFFERENT INSTRUCTION SET

In order to demonstrate the adaptability of our approach, we replace the original instruction sets
with another one. In this experiment, we re-train the instruction-goal mapping module with new
human demonstrations, while the entire models of the baseline approaches are re-trained.The results
are plotted in Figs. 4 and 5. It is observed that the RL-based baseline in all the tasks and the IL-
based baseline in most of the tasks with the novel instruction set obtain no significant improvement
comparing to our approach. These results also reveal that compared to our modularized method,
the end-to-end training approaches encounter difficulties in adapting their models to an unfamiliar
instruction set. In Fig. 4, it cost the RL-based baseline at least twice more effort to reach the same
performance as our approach in the simplest task FetchReach. On the other hand, in Fig. 5, the IL-
based baseline reaches approximately comparable performance as ours with 16,384 demonstrations,
while our proposed approach requires merely eight demonstrations.

3.4 COMPARISON OF ADAPTABILITY WITH A DIFFERENT ACTION SPACE

We further perform experiment for comparing the adaptability of our framework against the baseline
approaches on a different action space. The results are plotted in Figs. 6 and 7. In this experiment,
we only retrain the goal-policy mapping module of our framework. In Fig. 6, only the RL-based
baseline in FetchReach is capable of reaching the same performance of our framework. However, it
takes five times longer than ours, revealing the inefficiency of the RL-based baseline when adapting
to an environment with an unfamiliar action space. On the other hand, the IL-based baseline is able
to obtain the same performance as our proposed method in FetchReach. However, the IL-based
baseline still necessitates 8,192 demonstrations while our approach only requires eight demonstrations.
According to the experiments, our proposed approach achieves higher mean performances than all of
the baselines, which validate the adaptability and data efficiency of the proposed modular approach.
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4 CONCLUSIONS

We presented a modular framework for separating the instruction-to-action mapping procedure into
two distinct stages. The first stage maps an input instruction to a goal, while the second stage maps
the goal to a fitting policy selected from a set of robot policies. We implemented the above two
stages as the instruction-goal mapping module and the goal-policy mapping module, respectively,
and employed a distance function for evaluating the affinity between the instruction and the goal.
We embraced the concept of metric learning in the development of our distance function, and used
it to serve as a non-linear regressor to evaluate whether a given instruction is close to a goal or not.
During the evaluation phase, we adopted CEM in our searching procedure. Our experimental results
demonstrated that the proposed framework is able to learn an effective instruction-to-action mapping
procedure in the OpenAI Gym robotic arm manipulation tasks, and is superior to the baseline methods
in terms of efficiency. We further validated that the proposed framework is able to adapt to new
instruction spaces and new robot action spaces much faster than the baseline methods.
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